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Introduction to Arbitrage 
A textbook definition of arbitrage is “the simultaneous purchase and sale of the same, or essentially similar, 
security in two different markets for advantageously different prices” (Sharpe and Alexander 1990).  
  
This can manifest in many forms and one example is to exploit a difference in pricing of the same stock at two 
exchanges: simultaneously buy at the low price and sell at the high price to generate a profit. Cross-currency 
arbitrage, also called circular arbitrage, is another variant and it involves exploiting pricing discrepancies amongst 
currencies in a foreign exchange market, in which converting between currencies in a cycle (e.g. GBP→EUR→ 
CHF→GBP) results in a profit.  
  
In theory, this type of trading carries zero risk since it does not involve predicting the market and it is known in 
advance that a profitable arbitrage opportunity exists, before it is exploited. In practice, risks such as execution risk 
is entailed since it may not be possible to simultaneously execute the necessary trades to exploit the arbitrage 
opportunity and the trades may take time to complete. During this time, the pricing of the assets involved may 
change such that it not possible to profit from continuing to trade the opportunity. Furthermore, other market 
frictions such as transaction costs and taxes also impact the feasibility of profiting from arbitrage opportunities [1]. 
  
Arbitrage opportunities are often very short-lived since arbitrageurs would trade to profit from an identified 
opportunity, continuing to buy the relatively underpriced assets involved (creating excess supply) and continuing to 
sell the relatively overpriced assets involved (creating excess demand) until the mispricing is driven to correction 
and the arbitrage opportunity no longer exists [2]. This is a reason why many financial models and pricing 
calculations assume the absence of arbitrage opportunities. However, for our purposes, the short-term nature of 
these opportunities motivates the development of efficient computational techniques to find and exploit them 
quickly to beat the competition. 
  
Initial graph-theoretical specification of cross-currency arbitrage 
Given a set of currencies and exchange rates between them, the foreign exchange market can be defined as 
directed weighted graph , where each currency  is represented with a node and each edge  
exists if it is possible to convert  to  and is assigned weight , defined as the best ask price for this trade, 
possibly accounting for per-unit transaction costs. 
  
An example of a foreign exchange market represented in this way is shown below. 

JPY, EUR, CAD, CNY, USD  

[Fig 1a: Adjacency matrix of . Source of data: Rosenberg [9]] 

G c1, c2, …, cn ∈ C (ci, cj)
ci cj Wij

C = { }

JPY EUR CAD CNY USD

JPY 1.0 0.00872 0.01266 0.06463 0.00961

EUR 114.65 1.0 1.45193 7.41088 1.10185

CAD 78.94 0.68853 1.0 5.10327 0.75799

CNY 15.47 0.13488 0.19586 1.0 0.14864

USD 104.05 0.90745 1.31904 6.72585 1.0

G [Fig 1b: ]G



Properties that can be observed from this graph include [4]: 
•  [A rate of 1 is assigned to converting from one currency to itself] 
•  [Exchange rate ask price from currency  to ] is always positive] 

•   

• This graph is complete [any currency can be converted to any other currency]  

Consider starting with one USD, then trading it between other currencies, then back to USD in this market. If an 
arbitrage opportunity exists, exploiting it would result in more than one USD after trading in this manner. 

In our example, most trades of this type, such as USD→JPY→CAD→USD, result 
in a loss. However, arbitrage opportunities exist, such as  
USD→CAD→CNY→USD which results in a profit of 0.056%, with 
USD→CAD→CNY→JPY→USD (shown in red) being the optimal arbitrage 
opportunity providing a profit of 0.074% [1.31904 * 5.10327 * 15.47 * 0.00961]. 

In terms of our graph, a feasible arbitrage opportunity is represented by a cycle 
such that when the weights of the edges in the cycle are multiplied, the result  is 
greater than one. The optimal arbitrage opportunity is given by the cycle for 
which  is greatest.  

    

Detecting the existence of arbitrage opportunities 
A brute force method to detect arbitrage opportunities may involve using an algorithm to find all cycles in the 
graph, for example depth-first search. Each cycle is then tested for an arbitrage opportunity by multiplying the 
edge weights together and checking if the result is greater than one. The algorithm could terminate after finding 
one arbitrage opportunity, or check every cycle to find the optimal arbitrage opportunity. 

With  currencies, the complete graph contains  cycles of length , and  cycles in total. 

Checking if a cycle of length  provides an arbitrage opportunity requires  multiplications. Hence a brute force  

algorithm would require  operations, which is of factorial order . 

The process of detecting an arbitrage opportunity can be simplified by using the logarithm of the exchange rates 
as the weights on the graph’s edges, instead of using the exchange rate itself. Due to the property 

, arbitrage opportunities can be detected by adding the weights of the edges in the cycles as 
opposed to multiplying them. 

An arbitrage opportunity is occurs where , so with transforming the weights to  
this condition becomes  
 , meaning 
that a positive weight cycle in the graph represents an arbitrage opportunity. The optimal arbitrage opportunity is 
given by the maximal positive weight cycle. 

Furthermore, transforming the weights to , the condition becomes 
  , 
hence a negative weight cycle in the graph represents an arbitrage opportunity. The optimal arbitrage opportunity 
is given by the minimal negative weight cycle. 
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[The forward and backward exchange rate are approximately equivalent, 
differences are typically within bid-ask spreads]

[Fig 2: The optimal arbitrage 
opportunity in ]G



Having an additive, rather than multiplicative, condition to check for arbitrage allows us to apply standard 
graph algorithms to this problem, which often calculate distances by adding edge weights, not multiplying them. 
However, since  is negative for , algorithms that assume edge weights are positive, such as 
Dijkstra’s algorithm, can not be used. Instead, algorithms such as Floyd-Warshall or Bellman-Ford can be applied, 
which have a worse time complexity but provide correct results with negative weights. 

Using the Bellman-Ford algorithm to detect arbitrage opportunities 
The Bellman-Ford algorithm provides the shortest distances from one node to any other node in a graph, and can 
be used to detect negative-weight cycles in the graph. This allows for the detection of arbitrage opportunities on 
the graph , which is uses the negative log weights . 

    [Fig 3a: Iterations of the Bellman-Ford algorithm on ]                  [Fig 3b: Detecting negative weight cycle] 

The list  stores the shortest distance from the start node to every other node, initialised with zero for the start 
node (USD) and infinity for every other node. At each iteration, every edge  with weight  in the graph is 
checked to see if the path to  using this edge is shorter than the currently identified shortest path to . That is, 

  if this value is smaller than the current . The  list is also updated keep 
track of this edge  by storing the predecessor vertex  at . Fig 4a shows this process on . [5]. 

In a graph without negative-weight cycles, this algorithm will run for at most  iterations since the longest 
path from the start node to any other node which could provide the shortest distance, of length , will have 
been checked by the algorithm and there will be no more opportunities to reduce the values in the  list.  

However, if a negative weight cycle exists in the graph, it will be possible to continue 
reducing the values in the  list by taking a path that continually loops in this 
cycle, generating smaller and smaller shortest distances to these nodes. Hence, the 
existence of a negative-weight cycle can be determined by checking if a value in  
could be reduced after the  iteration, as seen in Fig 3b. To obtain the 
negative-weight cycle, the  list can be traversed in linear time to find the cycle 
formed between the vertices stored [6]. 

In our example, the  list defines a graph shown in Fig 3c. 
The cycle detected from this list is USD→CAD→CNY→USD, with weight -0.000805. 
Reversing the negative log transformation, this corresponds to a profit of 0.056%, 
which is a valid arbitrage opportunity but not the optimal one. 

lg(Wij) 0 < Wij < 1

G′ Aij

Iteration USD JPY EUR CAD CNY

Initial 0.000000 Inf Inf Inf Inf

USD None None None None

1 0.000000 -4.644872 0.000000 -0.276904 -1.905958

USD USD USD USD USD

2 -0.000558 -4.645688 0.096292 -0.277462 -1.906786

CNY CAD USD CAD CNY

3 -0.001115 -4.646246 0.095734 -0.278020 -1.907343

CNY CNY CAD USD CAD

4 -0.001673 -4.646804 0.095177 -0.278577 -1.907901

CNY CNY CAD USD CAD
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[Fig 3c: Graph formed by 
 after the 4th iteration]pr ed



This method allows us to detect an arbitrage opportunity in polynomial time. The Bellman-Ford algorithm has a 
time complexity of  with , and since the graphs for this problem are complete or near-
complete, . Hence the algorithm has a time complexity of  for  currencies.  

Finding optimal arbitrage opportunities 
The Bellman-Ford algorithm will terminate on only one negative weight cycle in the graph, which may not provide 
the optimal arbitrage opportunity, as seen in the previous example. Finding an optimal cross-currency arbitrage 
opportunity is an NP-hard problem, since finding a maximum (or minimal) weight -cycle in  contains the 
travelling salesman problem as a special case (consider ) [11]. Binary integer linear programming can be 
used to solve this problem, which can be formulated as a maximum network flow optimisation problem [7]. 

Let  be a binary variable to represent if edge  is included in the path (meaning  is converted to ). 

Maximise                     [Maximise the log-conversion rate weight of currencies in the path] 

Subject to  for all    

 
      
            for all   
   
   

            
  0 or 1, for all     

The constraints ensure that the edges included in the solution will form a cycle, which can be obtained by 
determining which variables  are set to 1.  An arbitrage opportunity exists if and only if the optimal objective 
value is positive. 

To solve this problem, Soon and Ye [7] used the network simplex method, a variant of the simplex method 
designed to solve network flow problems. Furthermore, they used sensitivity analysis to determine in whether, upon 
receiving updated interest rate data, the current solution is still optimal or if further iterations of the network 
simplex method are required to re-optimise the solution. This allows the current solution to be updated quickly to 
detect new arbitrage opportunities as the exchange rates change in real time. 

Quantum Computing in finance 
Quantum computing exploits quantum mechanical properties of matter to perform calculations as opposed to the 
familiar bits, transistors, and logic gates of classical computing. This has the potential to disrupt fields such as 
logistics, cryptography, and finance due to the vast computational speedups quantum algorithms can provide for 
certain problems compared to their fastest classical counterparts.  

Orús, Mugel and Lizaso [8] provided an overview into the state of quantum computing in finance, including the 
applications of quantum optimisation, quantum machine learning methods and quantum amplitude estimation (for 
Monte Carlo sampling) in finance. Some of their overview of quantum computing is provided before exploring its 
applications in finding optimal arbitrage opportunities. 
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In quantum computing, a qubit is the minimum amount of processable information, which encodes classical bits 0 
and 1 as states  and . It is possible for the system to be in a superposition of these states, where the 
system is in all states simultaneously. Multiple qubits can be entangled, meaning that it is not possible to describe 
their state individually. Entanglement is exploited by quantum algorithms to obtain computational speedups over 
their classical counterparts, since systems without much entanglement can be efficiently modelled with classical 
methods such as tensor networks. Fig 4 shows the general structure of a quantum algorithm. 

[Fig 4: General structure of a quantum algorithm. Source: Orús Mugel and Lizaso [8]] 

Quantum computers currently operate at relatively small scales, facing challenges such as decoherence 
(uncontrolled interactions between the system and its environment) and limitations in quantum error correction 
(which tries to correct for decoherence). While this makes it challenging for quantum computers to outperform 
classical computers in practice, there is a significant push towards advancement in the field with various 
technology and banking companies actively investing in the development of the technology. 

Quantum Computing to find optimal arbitrage opportunities 
Adiabatic quantum computing is a quantum computing model based on the idea that a quantum system which 
starts in a ground state will likely remain in a ground state throughout a slow deformation of the initial state. [10] 
This idea can be formalised using the Hamiltonian operator on quantum systems (which describes the total energy 
of the system at a given state), and proven to obtain the adiabatic quantum theorem. 

Adiabatic quantum computing can be used to solve optimisation problems: the optimisation problem is mapped to 
the physical problem of finding the ground state of the Hamiltonian , which is encoded with the objective 
function to minimise. The system is initialised with a known and easy-to-prepare ground state . Over time, this 
system is deformed to , which according to the quantum adiabatic theorem, finds with a high probability the 
ground state of , providing the solution to the optimisation problem. Quantum annealers use adiabatic evolution 
to solve optimisation problems, with dedicated hardware being currently commercially available [8]. 

A similar classical algorithm is simulated annealing. To apply this to finding currency arbitrage opportunities, the 
algorithm starts with an initial cycle, and modifies the current solution by adding and/or removing edges to 
generate a neighbouring cycle. This cycle is evaluated against the objective function, and compared to the 
objective value of the current cycle. A temperature variable defines how likely the algorithm is to set the current 
solution to a worse neighbouring solution. At the start of the program, the temperature is high and it is more 
likely to move to a worse neighbouring solution, promoting exploration. As the iterations go on, the temperature is 
reduced, and the algorithm is less likely to move to a worse neighbouring solution, promoting exploitation of the 
current solution until the algorithm terminates.  

Both simulated annealing and quantum annealing are examples of metaheuristic methods. Metaheuristic methods 
explore the optimisation function  by evaluating it at values various values of , which are usually determined 
using the notion that good solutions are likely to be near other good solutions. Whilst simulated annealing explores 
the optimisation surface by ‘walking over peaks’, quantum annealing does this by ‘tunnelling through peaks’ [10]. 
In both cases, it is not guaranteed that the algorithm will find the optimal solution. 

|0⟩ |1⟩

1. Encode the input data into the state of a set of qubits. 
2. Bring the qubits into superposition over many states (i.e., use quantum superposition). 
3. Apply an algorithm (or oracle) simultaneously to all the states (i.e., use quantum entanglement amongst the 
qubits); at the end of this step, one of these states holds the correct answer. 
4. Amplify the probability of measuring the correct state (i.e., use quantum interference). 
5. Measure one or more qubits.

Hp

H0
Hp

Hp

f (x) x



Rosenberg [9] reformulated the currency arbitrage as a Quadratic Unbounded Binary Optimisation (QUBO) 
problem to allow the D-Wave 2X quantum annealer to solve the problem, providing the solution in tens of 
milliseconds. This reformulation involved rewriting the constraints from the linear programming formulation as 
penalty terms on the objective function. The author also considered extra penalty terms to reduce the execution 
risk of the transaction (by incentivising shorter cycles) or terms to include fixed transaction costs. With the 
example used in this deep dive, which is taken from this paper, the annealer successfully found the optimal 
solution USD→CAD→CNY→JPY→USD which provides a profit of 0.074%. 

Conclusion 
Various techniques from depth-first search to quantum optimisation can be used to detect currency arbitrage 
opportunities. These methods have applied beyond foreign exchange markets, for example, negative cycle detection 
has been applied to detect arbitrage in decentralised cryptocurrency exchanges [11, recommended reading]. 
Further developments in this field aims to find better arbitrage opportunities more efficiently, with methods such 
as one involving operating on the graph’s adjacency matrix [4] or a quantum-inspired simulated bifurcation 
approach [12] offering the reader further avenues for exploration. 

As highlighted in the introduction, arbitrage is not risk-free in practice and the feasibility of identifying and 
profiting from detected opportunities may be impacted by market frictions and access to market data, which may 
be ignored by some of the theoretical methods. For example, Cai and Deng [13] have shown that the problem of 
merely detecting the existence of arbitrage in a frictional foreign exchange market is NP-complete (using a 
polynomial reduction from SETCOVER), contrasting with our earlier polynomial-time solution with the Bellman-
Ford algorithm. This underscores the importance of considering real-world complexities and market conditions 
when applying theoretical models to actual trading scenarios. 
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